

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Chemistry (WCH14) Paper 01: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question paper log number P71887A Publications Code WCH14_01_2210_MS All the material in this publication is copyright © Pearson Education Ltd 2023

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Section A (Multiple Choice)

Question number	Answer	Mark
1(a)	The only correct answer is A (rate = $k[NO]^2[O_2]$; rate = $k[NO]^2[O_2]$)	(1)
	B is incorrect because the rate equation is not determined by the stoichiometric equation	
	<i>C</i> is incorrect because the rate cannot depend only on the concentration of products	
	D is incorrect because the rate cannot depend only on the concentration of products	

Question number	An	swer	Mark
1(b)	The	e only correct answer is B(colorimetry; volume change)	(1)
	A	is incorrect because titration cannot be used for continuous monitoring of a reaction	
	С	is incorrect because the mass of the system does not change	
	D	is incorrect because the mass of the system does not change and titration cannot be used for continuous monitoring of a reaction	

Question number	Answer	Mark
2	The only correct answer is C (the time taken for the concentration of a reactant to halve)	(1)
	<i>A</i> is incorrect because the reaction is slower and slower as it progresses	
	B is incorrect because the rate constant does not change at a given temperature	
	<i>D</i> is incorrect because time taken for the concentration of a product to double will vary	

Question number	Ar	iswer	Mark
3	Th	e only correct answer is A (rate = k[E][F])	(1)
	B	is incorrect because the rate depends on concentrations of the reacting species in the slow step and the stoichiometry of this step	
	C	is incorrect because the rate equation cannot include intermediate concentrations	
	D	is incorrect because the rate depends on concentrations of the reacting species in the slow step and the stoichiometry of this step and the rate equation cannot include intermediate concentrations	

Question number	Answer	Mark
4	The only correct answer is D (graph 4)	(1)
	<i>A</i> is incorrect because entropy increases with temperature and the entropy change for the change from liquid to gas is greater than that for solid to liquid	
	<i>B</i> is incorrect because entropy increases with temperature	
	<i>C</i> is incorrect because the entropy change for the change from liquid to gas is greater than that for solid to liquid	

Question number	Answer	Mark
5	The only correct answer is C (increases; unchanged)	(1)
	<i>A</i> is incorrect because the energy of the system does not change for an ideal gas	
	<i>B</i> is incorrect because the entropy of the system increases and the energy of the system does not change for an ideal gas	
	<i>D</i> is incorrect because the entropy of the system increases	

Question number	An	swer	Mark
6	Th	e only correct answer is B (kinetically stable and thermodynamically unstable)	(1)
	A	is incorrect because as the reaction occurs with a catalyst the reactant mixture must be thermodynamically unstable	
	C	is incorrect because as the reaction requires a catalyst the reactant mixture must be kinetically stable and as the reaction occurs the reactant mixture must be thermodynamically unstable	
	D	is incorrect because as the reaction requires a catalyst the reactant mixture must be kinetically stable	

Question number	Answer	Mark
7a	The only correct answer is C (the sum of the first and second electron affinities of oxygen)	(1)
	<i>A</i> is incorrect because both outer electrons have been added	
	B is incorrect because both outer electrons have been added	
	D is incorrect because y does not include the enthalpy of atomisation	

Question number	Answer	Mark
7b	The only correct answer is $D(\Delta_f H = v + w + x + y + z)$	(1)
	<i>A</i> is incorrect because the signs of y and z are incorrect	
	B is incorrect because the sign of z is incorrect	
	<i>C</i> is incorrect because the sign of <i>y</i> is incorrect	

Question number	Answer	Mark
8	The only correct answer is D(anion polarised by cation;Born-Haber more exothermic)	(1)
	<i>A</i> is incorrect because anions do not polarise cations	
	B is incorrect because covalency makes the Born-Haber value more exothermic	
	<i>C</i> is incorrect because anions do not polarise cations and covalency makes the Born-Haber value more exothermic	

Question number	Answer	Mark
9(a)	The only correct answer is $D(K_c = \frac{[H_2]^4}{[H_2O]^4})$	(1)
	A is incorrect because the solids are not included in the K_c expression for this equilibrium	
	B is incorrect because the solids are not included in the K_c expression for this equilibrium	
	C is incorrect because the solids are not included in the K_c expression for this equilibrium	

Question number	Answer	Mark
9(b)	The only correct answer is $D(K_c \text{ unchanged}; K_c \text{ decreases})$	(1)
	<i>A</i> is incorrect because K_c is not affected by the state of division of the solid and K_c decreases for an exothermic reaction	
	B is incorrect because K_c decreases for an exothermic reaction	
	C is incorrect because K_c is not affected by the state of division of the solid	

Question number	Answer	Mark
10	The only correct answer is A(HCOOH, HCOO ⁻ , CH ₃ COOH ₂ ⁺ , CH ₃ COOH)	(1)
	B is incorrect because methanoic acid is the stronger acid and will protonate ethanoic acid	
	<i>C</i> is incorrect because the acids and bases have been paired incorrectly	
	<i>D</i> is incorrect because methanoic acid is the stronger acid and the acids and bases have been paired incorrectly	

Question number	Answer	Mark
11	The only correct answer is A(increases, increases)	(1)
	B is incorrect because the solution becomes less acidic with dilution so pH increases	
	<i>C</i> is incorrect because the proportion of acid molecules dissociating increases with dilution	
	<i>D</i> is incorrect because the proportion of acid molecules dissociating increases with dilution and the solution becomes less acidic with dilution so pH increases	

Question number	Answer	Mark
12(a)	The only correct answer is C (10.3)	(1)
	A is incorrect because the concentration of OH^- ions has been obtained by halving the concentration of magnesium hydroxide rather than doubling it	
	B is incorrect because the concentration of OH^- ions has been taken as equal to the concentration of magnesium hydroxide	
	<i>D</i> is incorrect because the concentration of OH ⁻ ions has been obtained by taking the square root of the concentration of magnesium hydroxide	

Question number	Answer	Mark
12(b)	The only correct answer is B(higher; higher)	(1)
	<i>A</i> is incorrect because the solution at 100°C will be more alkaline	
	C is incorrect because the concentration of OH^- ions at 100°C will be higher as solubility is greater	
	D is incorrect because the concentration of OH^- ions at 100°C will be higher and the solution will be more alkaline	

Question number	Answer	Mark
13	The only correct answer is B(propanal forms permanent dipole-permanent dipole forces)	(1)
	<i>A</i> is incorrect because the London forces in the two molecules will be similar	
	<i>C</i> is incorrect because pure propanal does not form hydrogen bonds	
	D is incorrect because pure propanal does not form hydrogen bonds	

Question number	Answer	Mark
14	The only correct answer is B (butanoyl chloride and 3-methylbutan-2-ol)	(1)
	<i>A</i> is incorrect because the methyl group of the alcohol needs to be on the C3 atom	
	<i>C</i> is incorrect because the acyl chloride needs to have four carbon atoms and the methyl group of the alcohol needs to be on the C3 atom	
	D is incorrect because the acyl chloride needs to have four carbon atoms	

Question number	Answer	Mark
15	The only correct answer is A (ethanal and propanone)	(1)
	 B is incorrect because propanone also has the CH₃CO group that results in a positive iodoform test C is incorrect because ethanal also has the CH₃CO group that results in a positive iodoform test D is incorrect because both ethanal and propanone have the CH₃CO group that results in a positive iodoform test 	

Question number	Answer	Mark
16	The only correct answer is C (0.70)	
	<i>A</i> is incorrect because the distance travelled by <i>X</i> has been measured from the solvent front	
	B is incorrect because distance travelled by the solvent has been measured from the bottom of the plate	
	<i>D</i> is incorrect because distance travelled by <i>X</i> has been measured from the bottom of the plate	

TOTAL FOR SECTION A = 20 MARKS

Section B

Question number	Answer	Additional guidance	Mark
17(a)(i)	An answer that makes reference to the following		(3)
	• sodium thiosulfate reacts with the iodine formed (1)	Accept equation $S_2O_3^{2^-} + I_2 \rightarrow S_4O_6^{2^-} + 2I^-$	
	• when (all) the sodium thiosulfate is used up has reacted the iodine reacts with the starch giving a blue-black colour (1)	Allow a blue-black colour forms at the end of the reaction Allow iodine reacts with the starch giving a blue-black colour Allow blue or black for blue-black Ignore reference to the colour of the solution before the starch-iodine complex forms Do not award iodide reacts with starch	
	• the reciprocal of the time taken for the blue-black colour to appear is a measure of the rate (1)	Allow $1/t = \text{rate of reaction} / 1/t \propto \text{rate of reaction}$ Allow [reactant]/t \propto rate of reaction Do not award thiosulfate as a reactant Allow (for M3) repeat experiment varying concentration of a reactant; plot concentration against time (for blue-black colour to appear) and measure initial gradient Ignore references to colorimeter	

Additional guidance	Mark
	(3)
Rate = $k[H_2O_2(aq)]^a[I^-(aq)]^b[H^+(aq)]^c$	
or	
$P_{ata} = k[H_a O_a(aa)]^a[I^-(aa)]^b$	

17(a)(ii)	An answer that makes reference to the following		(3)
	• correct form of the rate equation (1)	Rate = $k[H_2O_2(aq)]^a[I^-(aq)]^b[H^+(aq)]^c$	
		or	
		$Rate = k[H_2O_2(aq)]^a[I^-(aq)]^b$	
		Allow any values of a, b and c for M1 provided at least one value >0. Zero order species do not need to be shown	
		Allow K for <i>k</i>	
	• values of three powers (including [H ⁺] not shown) (2)	Rate = $k[H_2O_2(aq)][I^-(aq)][H^+(aq)]^0$	
		Accept Rate = $k[H_2O_2(aq)][I^-(aq)]$	
		For M2 deduct a mark for each incorrect power (reactant not shown order $= 0$)	
		Overall mark for some of these responses including M1:	
		$Rate = k[H_2O_2(aq)][I^{-}(aq)][H^{+}(aq)] \text{ scores } (2)$	
		Rate = $k[H_2O_2(aq)]$ scores (2)	
		Rate = $k[I^{-}(aq)]$ scores (2)	
		$Rate = k[H_2O_2(aq)]^2[I^-(aq)] \text{ scores } (2)$	
		$Rate = k[H_2O_2(aq)][H^+(aq)] \text{ scores } (1)$	
		Rate = $k[I^{-}(aq)][H^{+}(aq)]$ scores (1)	
		Ignore state symbols even if incorrect	
		Correct answer with no intermediate stages scores (3)	
		Use of round brackets deduct 1 mark	

Question

number

Answer

Question number	Answer		Additional guidance	Mark
17(a)(iii)			Example of calculation	(3)
			TE on (a)(ii) for equations in correct form. Units must match the equation used	
	• rearrangement of rate equation	(1)	$k = \text{rate }/([H_2O_2(aq)][I^-(aq)])$ ignore state symbols	
	• calculation of value from Run 1 data	(1)	$k = \frac{0.00181}{0.0210 \times 0.0198} = 4.3531$ Allow use of data from any run	
	• units of <i>k</i>	(1)	dm ³ mol ⁻¹ s ⁻¹ Allow units in any order Allow mol ⁻ for mol ⁻¹ here and throughout paper Ignore SF except 1 SF	
			$k[I^{-}(aq)][H^{+}]$ gives 87.06 dm ³ mol ⁻¹ s ⁻¹ scores (3) if TE on (a)(ii) Correct answer with units but no working scores (3)	

Question	Answer		Additional guidance	Mark
number 17(b)	• substitution of values for both temperatures into the Arrhenius equation	(1)	Example of calculation $\ln k_{293} = \text{constant} - \frac{E_a}{293 \ xR}$ and $\ln k_{313} = \text{constant} - \frac{E_a}{313 \ xR}$	(4)
	• subtraction and rearrangement of the two equations	(1)	$\ln\left(\frac{k_{313}}{k_{293}}\right) = \ln 4.45 = \frac{E_a}{R} \left(\frac{1}{293} - \frac{1}{313}\right)$	
	• solving equation to give value for E_a	(1)	$E_{\rm a} = (+)56887$	
	• answer to 2/3 SF and correct units	(1)	(+)57000 / (+)56900 J mol ⁻¹ Or (+)57 / (+)56.9 kJ mol ⁻¹	
			Correct answer with some working scores (4)	
			Some attempt at a calculation using the Arrhenius equation, giving a positive value to 2 or 3 SF and correct units scores M4	

(Total for Question 17 = 13 marks)

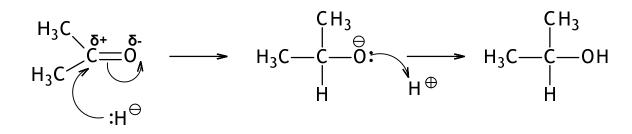
Question number	Answer		Additional guidance	Mark
-18a	8	ges and fully sustained reasoning. The ent and for how the answer is ag.	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).	
	6 5-4 3-2 0	4 3 2 1 0	If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	
	The following table shows how the measure and lines of reasoning	arks should be awarded for	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks 3 or 4 indicative points would get 1 reasoning mark 0, 1 or 2 indicative points would get 0 reasoning marks.	
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with	Number of marks awarded for structure of answer and sustained lines of reasoning 2 1	If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning	
	some linkages and lines of reasoning Answer has no linkages between points and is unstructured	0		

Question number	Answer	Additional guidance	Mark
*18(a)	Indicative content		(6)
	IP1 'optically active' means that these molecules rotate the plane of plane-polarised light	Allow rotate plane-polarised light Allow racemic mixture does not rotate (the plane of) plane-polarised light so not optically active Do not award bend / deflect / reflect / change for rotate	
	IP2 lactic acid (is optically active because its) molecules can form non-superimposable mirror images	Allow has an asymmetric carbon (atom) Allow has a chiral centre / carbon Allow has a carbon with four different groups / atoms bonded / attached to it	
	IP3 lactic acid formed in muscles contains one type of enantiomer	Allow lactic acid formed in muscles contains more of one enantiomer (than the other)	
	and	Allow isomers / molecule for enantiomers	
	lactic acid formed in the synthesis contains equal numbers of moles of the two enantiomers	Allow just 'forms a racemic mixture' Do not award laboratory lactic acid and muscular lactic acid are different molecules	
	IP4 the carbonyl group is planar	Allow ethanal is planar about the carbonyl group /CHO do not award just 'ethanal is planar' do not award intermediate / carbocation is planar	
	IP5 (in the synthesis the) nucleophile / CN ⁻ attacks (equally) from above and below the plane (of the carbonyl group)	Allow nucleophile / CN^- attacks from either side / both sides / top & bottom Do not award S_N1 / S_N2 / nucleophilic substitution	
	IP6 (because) lactic acid formed in muscles involves the oxidation of an enantiomer in a way that does not involve the chiral centre	Allow the enzymes involved (in forming lactic acid in muscles) are stereospecific Allow enzymes react with (only) one enantiomer Allow biochemical / natural processes (often) select one particular enantiomer / (optical) isomer	

Question number	Answer	Additional guidance	Mark
18(b)(i)	An diagram showing	Example of polymer	(2)
	 ester linkage (1) remainder of the structure including continuation bonds (1) 	$ \begin{array}{c c} CH_{3} & O \\ CH & C \\ O & CH \\ O & CH_{3} \end{array} $	
		Allow	
		$ \begin{bmatrix} CH_3 & 0 \\ CH & C \\ CH & $	
		Allow more than 2 correct repeat units Ignore omission of brackets	
		Ignore 'n' showing repeat units Allow skeletal formula	
		Ignore connectivity errors	

Question number	Answer	Additional guidance	Mark
18(b)(ii)	 empirical formula mass and molecular formula 	Example of calculation formula mass of $C_3H_4O_2 = 72$ and molecular formula of $X = C_6H_8O_4$ Allow just $C_6H_8O_4$	(1)

Question number	Answer	Additional guidance	Mark
18(b)(iii)	 An answer that makes reference to the following (two peak areas show that) there are two proton environments (1) 	Allow two types of proton / hydrogen / hydrogen atom Ignore just 'chemical environment' Ignore just 'two protons / hydrogens'	(3)
	• (relative peak area) shows 3 times as many protons in one environment compared with the other (1)	Accept 6 protons in one environment and 2 in the other Ignore 3 protons in one environment and 1 in the other	
	• splitting shows that the two proton environments are adjacent (1)	Allow the two types of proton are on neighbouring carbon atoms Allow doublet must be adjacent to one proton and quartet must be adjacent to three protons (Do not award omission of doublet and quartet)	
		Ignore references to chemical shifts Ignore explanations of the splitting patterns even if incorrect	


Question number	Answer	Additional guidance	Mark
18(b)(iv)	 An answer that makes reference to the following (three peaks show that) there are three carbon environments (1) 	Allow three types of carbon (atom) Ignore just 'chemical environment' Ignore reference to peak height / area Do not award three carbon atoms	(2)
	• the carbon atoms with no hydrogen atoms must be in identical environments Or Chemical shift at about 170 ppm indicates an ester group (1)	Accept the three environments each have two carbon atoms Allow 160–180 ppm or 'peak on LHS' Allow ester shown as structure Allow ester peak labelled on spectrum Ignore references to other chemical shifts even if incorrect Ignore references to other functional groups	

Question	Answer	Additional guidance	Mark
number			
18(b)(v)	An answer that makes reference to the following	Example of structure	(1)
	• structure of lactide		
		$H_{3}C \xrightarrow{C} O$	
		Allow skeletal or displayed formulae or any combination of these	
		No TE on incorrect deductions in (b)(ii), (b)(iii) and (b(iv)	
		(Total for Question 18 = 1	5 marks)

Question
numberAnswerAnswerMark19(a)An answer that makes reference to the following(1)• dry
and
etherAllow dry ethoxyethane
Allow dry diethyl ether
Allow 'no water' / anhydrous for 'dry'(1)• Do not award 'ester'
Do not award additional reagentsDo not award additional reagents

Question Additional guidance Mark Answer number **19(b)** An answer that makes reference to the following (4) 8 points correct scores 4 dipole on C=O bond • 6 or7 points correct scores 3 4 or 5 points correct scores 2 curly arrow from C=O bond to the oxygen atom or • 2 or 3 points correct scores 1 just beyond Curly arrows should be closer to their correct origin or target lone pair on hydrogen of hydride ion • than alternatives curly arrow from (lone pair on) hydride Do not award curly arrow from negative charge on hydrogen ٠ to carbonyl carbon Allow curly arrow to δ^+ on carbon Allow charge on bracket around intermediate intermediate with negative charge on O atom • Do not award intermediate with δ lone pair on oxygen ٠ Allow curly arrow to + on hydrogen curly arrow from (lone pair on) oxygen to • Allow curly arrow to hydrogen on H-Cl with curly arrow hydrogen ion from H-Cl bond to chlorine or just beyond Do not award curly arrow from negative charge on oxygen Ignore connectivity errors on groups final product •

Example of mechanism

 An explanation that makes reference to the following the C=O bond is polarised by the (electronegative) oxygen atom (Allow 'the C=O bond is polar / has a permanent dipole') Ignore just 'in C=O bond C is δ + and O is δ -' Ignore diagram of dipole shown Ignore explanations of polarity of C=O even if incorrect Ignore just ' π bond is polar'	(3)
) Ignore just 'in C=O bond C is δ+ and O is δ-' Ignore diagram of dipole shown Ignore explanations of polarity of C=O even if incorrect	
• H^- is are attracted to the δ^+ carbon () Allow nucleophiles are attracted to the δ + carbon	
 the C=C bond is non-polar OR 	Allow C=C has electron density equally distributed Ignore just ' π bond / alkene is non-polar'	
• nucleophiles are $/ H^-$ is repelled by (π electrons of) C=C		
	Ignore references to dipole-dipole interaction	
•	the C=C bond is non-polar OR nucleophiles are / H^- is repelled by (π electrons of)	the C=C bond is non-polar OR nucleophiles are / H ⁻ is repelled by (π electrons of) C=C (1) Allow C=C has electron density equally distributed Ignore just ' π bond / alkene is non-polar' C=C (π electrons) attract electrophiles Allow 'alkene double bond' for C=C Allow 'not attacked' for 'repelled'

Question number	Answer	Additional guidance	Mark
20(a)(i)	• substitution of values into $\Delta S^{\circ}_{system} = S_{products} - S_{reactants}$ (1)	In parts (i), (ii), (iii) and (iv) penalise omission of or incorrect units once only Allow units in any order Allow (e.g.) J/K/mol Do not award J/K mol Positive signs are not required Ignore SF except 1 SF throughout (a). Example of calculation $\Delta S^{o}_{system} = 229.5 + 219.5 - 310.1$	(2)
	 calculation of value from correct equation and sign and units 	= (+)138.9 J K ^{-1} mol ^{-1} TE for transcription errors on values only Correct answer with no working scores (2)	

Question number	Answer		Additional guidance	Mark
20(a)(ii)	 substitution of values into Δ_rH^o= Δ_fH^o(products) - Δ_fH^o(reactants) calculation of value from correct equation and sign and units 	(1)	Example of calculation $\Delta_r H^o = (-84.7 + 52.2) - (-126.5)$ $= (+)94.0 \text{ kJ mol}^{-1}$ Correct answer with no working scores (2) TE for transcription errors on values $-94.0 \text{ kJ mol}^{-1} \text{ scores (1)}$ $-159.0 \text{ kJ mol}^{-1} \text{ scores (1)}$	(2)
			$(+)263.4 \text{ kJ mol}^{-1} \text{ scores (1)}$ $(-10.4 \text{ kJ mol}^{-1} \text{ scores (1)}$	

PMT

Question	Answer	Additional guidance	Mark
number			
20(a)(iii)		Example of calculation	(2)
	• equation for $\Delta S^{\circ}_{surroundings}$ and substitution of values (1)	$\Delta S^{\circ}_{\text{surroundings}} = -\Delta H / T$ = -94000 ÷ 298 Accept = -94 ÷ 298	
	 calculation of value from correct equation and sign and units (1) 	$= -315.44 \text{ J K}^{-1} \text{ mol}^{-1} / -0.31544 \text{ kJ K}^{-1} \text{ mol}^{-1}$ TE on $\Delta_r H^o$ from (a)(ii) Do not award use of incorrect equation Correct answer with no working scores (2)	

Question number	Answer	Additional guidance	Mark
number 20(a)(iv)	• equation for ΔS°_{total} and substitution of values and calculated value with sign and units	Example of calculation $\Delta S^{\circ}_{\text{total}} = \Delta S^{\circ}_{\text{system}} + \Delta S^{\circ}_{\text{surroundings}}$ $= +138.9 + -315.44$ $= -176.54 \text{ J K}^{-1} \text{ mol}^{-1}$ Accept = +0.1389 + -0.31544 $= -0.17654 \text{ kJ K}^{-1} \text{ mol}^{-1}$ TE on values from (a)(i) and (a)(iii)	(1)
		TE on values from (a)(i) and (a)(iii)Do not award use of incorrect equationDo not award value obtained using mixed unitsCorrect answer with no working scores (1)	

	PMT

Question number	Answer	Additional guidance	Mark
20(a)(v)	• equation for feasibility (1)	Example of calculation $(\Delta S^{o}_{system} + (-\Delta H/T) = \Delta S^{o}_{total} = 0)$ $\Delta S^{o}_{system} = \Delta H/T \text{ or } -\Delta S^{o}_{system} = -\Delta H/T$	(2)
	substitution of values	$\Delta S^{\circ}_{\text{system}} = \Delta H / T \text{ or } -\Delta S^{\circ}_{\text{system}} = -\Delta H / T$ $T = 94000 \div 138.9$	
	and evaluation of T (1)	= 676.746 (K) (from unrounded values) Accept 403.746(°C)	
		TE on values from (a)(i) and (a)(ii)	
		Do not award use of incorrect equation (e.g. omission of negative sign in $\Delta S^{o}_{surroundings}$ expression)	
		Do not award value obtained using mixed units	
		Correct answer with no working scores (2)	

Question number	Answer	Additional guidance	Mark
20(b)(i)	• equilibrium constant expression	Example of expression $K_{\rm p} = \frac{p(C_2H_6) \times p(C_2H_4)}{p(C_4H_{10})}$	(1)
		Accept p_x where x = formula or pp(X) Ignore state symbols even if incorrect Do not award square brackets	

Question number	Answer		Additional guidance				Mark
20(b)(ii)		Example of	calculation			(5)	
				C4H10	C_2H_6	C_2H_4	
	• moles of reactants and products	(1)	mol at equil ^m	5 - 4.45 = 0.55	4.45	4.45	
	• mole fractions	(1)	mole fraction	$ \frac{0.55}{9.45} = 0.05820 $	$\frac{4.45}{9.45} = 0.47090$	$\frac{4.45}{9.45} = 0.47090$	
	• partial pressures	(1)	partial pressures	$\begin{array}{l} 1.20 \ge 0.05820 \\ = 0.06984 \end{array}$	1.20 x 0.47090 = 0.56508	1.20 x 0.47090 = 0.56508	
	 substitution of values into K_p equation and evaluation 	(1)	$K_{\rm p} = \frac{0.565}{0.069}$	$\frac{508^2}{9841} = 4.5721 \ (4)$	4.5720 with unro	unded numbers)	
	• units	(1)	= (4.5721) Ignore SF e TE on expre		at contains at lea	st two species	
			TE at each			-	
			Correct ans	wer with units bu	it no working sco	ores (5)	
				f partial pressure f mole fraction g			
					-		

(Total for Question 20 = 15 marks)

TOTAL FOR SECTION B = 51 MARKS

Section C

Question number	Answer	Additional guidance	Mark
21(a)(i)	An answer that makes reference to the following		(1)
	• equation for K_a	$K_{\rm a} = \frac{[\rm RCOO^-][\rm H^+]}{[\rm RCOOH]}$	
		Accept H ₃ O ⁺ for H ⁺	
		Ignore $[H^+]^2 / [RCOOH]$	
		Do not award round brackets	

Question number	Answer			Additional guidance	Mark
21(a)(ii)				Example of calculation	(4)
	• calculation of	f concentration of solution	(1)	concentration of gluconic acid solution	
				$=\frac{4.75 \text{ x } 1000}{196 \text{ x } 250} = 0.096939 / 9.6939 \text{ x } 10^{-2} (\text{mol dm}^{-3})$	
	• substitution of	of values into K_a expression	(1)	$1.38 \ge 10^{-4} = \frac{[\mathrm{H}^+]^2}{0.096939}$	
	• rearrangemen	nt to make $[H^+]$ subject of equation	(1)	$[\mathrm{H}^+] = \sqrt{(1.38 \times 10^{-4} \times 0.096939)}$	
	• calculation of and calculation of		(1)	$\begin{array}{l} [\mathrm{H^{+}}]^{2} = \ 1.3378 \ x \ 10^{-5} \ / \ 0.000013378 \\ [\mathrm{H^{+}}] = \ 3.6575 \ x \ 10^{-3} \ / \ 0.0036575 \\ \mathrm{pH} = -\mathrm{log}(3.6575 \ x \ 10^{-3}) = 2.4368 \ / \ 2.44 \ / 2.4 \end{array}$	
				Moles of acid not scaled to 1 dm ³ gives pH = 2.7378 scores (3) Omission of square root gives $pH = 4.8736$ scores (3) Use of g dm ⁻³ gives $pH = 1.2906$ scores (3) Omission of square root and use of g dm ⁻³ gives pH = 2.5814 scores (2)	
				TE throughout but Do not award M4 unless there is some calculation to give a value for $[H^+]$ Do not award M4 if pH ≤ 1 or ≥ 7	
				Ignore SF except 1 SF	

Question number	Answer	Additional guidance	Mark
21(b)(i)	An answer that makes reference to the following		(2)
	• the pH range of phenol red is 6.8–8.4 (1)	Ignore p $K_{in} = 7.9$	
	• phenol red changes colour in the vertical section of the titration curve (1)	Accept the colour change of the indicator occurs over the course of the addition of a very small volume of NaOH . Allow any indication of very small volume	
		Allow pH range covers the vertical section of the titration curve Allow pH range is within / at the vertical section of the titration curve Ignore 'at equivalence point'	
		Allow steep for vertical Allow sharp rise for vertical Ignore 'straight'	
		Ignore references to the titration involving a strong base and a weak acid	

Additional guidance	Mark
Example of calculation	(5)
$=\frac{25 \text{ x } 0.096939}{1000}=2.4235 \text{ x } 10^{-3} / 0.0024235 \text{ (mol)}$	
Allow any concentration of gluconic acid used for M1 and then TE throughout	
$1000 \times 2.4225 \times 10^{-3}$	

volume =
$$\frac{1000 \text{ x } 2.4235 \text{ x } 10^{-3}}{0.105}$$
 = 23.08 cm³

(1)

(1)
$$\frac{(35.0 - 23.08) \times 0.105}{1000} = 1.2516 \times 10^{-3} / 0.0012516 \text{ (mol)}$$

calculation of the concentration of NaOH in the final
titration mixture (1)
calculation of the pH of the final titration mixture to at
least 1 decimal place (1)
$$(1) \frac{1000 \times 0.0012516}{(25.0 + 35.0)} = 2.086 \times 10^{-2} / 0.02086 \text{mol dm}^{-3}$$
Allow scaling for 60 cm³ of any calculated concentration
or amount
pOH = $-\log(0.02086) = 1.6807$
pH = pK_w -pOH = 14 - 1.6807 =12.319 / 12.32 / 12.3
or
[H⁺] = $10^{-14} \div 2.086 \times 10^{-2} = 4.7939 \times 10^{-13}$

 $pH = -\log(4.7939 \times 10^{-13}) = 12.319 / 12.32 / 12.3$

OR (for M2 and M3)

least 1 decimal place

Question

number 21(b)(ii) Answer

•

•

•

•

٠

neutralisation

added in the titration

titration mixture

calculation of the amount of NaOH in 35.0 cm^3 (1) ٠

calculation of the pH of the final titration mixture to

calculation of the amount of gluconic acid in 25.0 cm^3 (1)

calculation of volume of NaOH needed for

calculation of excess amount of sodium hydroxide

calculation of excess amount of sodium hydroxide • added in the titration

 $35 \ge 0.105 \ge 10^{-3} = 3.675 \ge 10^{-3} / 0.003675 \pmod{10^{-3}}$ $3.675 \times 10^{-3} - 2.4235 \times 10^{-3} = 1.2515 \times 10^{-3} \pmod{10^{-3}}$ (1) Allow this mark even if it gives acid in excess Correct answer with some working scores (5) TE at each stage but do not award M5 if $pH \le 7$

If scaling omitted pH = 11.097 scores (4)

Question number	Answer	Additional guidance	Mark
21(c)(i)	An answer that makes reference to the following	General answer in terms of HA and A ⁻ scores max 3 (M2, M3 and M4). Accept names or formulae	(4)
	• gluconic acid and sodium gluconate present (in the buffer) in high concentration (1)	Accept RCOOH and RCOO ⁻ / RCOONa Allow large amount / large excess / form a reservoir Ignore conjugate base	
	• When acid is added the RCOO ⁻ / RCOONa is protonated (1)	Allow forming RCOOH / gluconic acid for protonated Allow H ⁺ ion is removed from the solution Allow RCOO ⁻ + H ⁺ \rightarrow RCOOH Allow RCOO ⁻ + H ⁺ \Rightarrow RCOOH shifts to the right	
	 When alkali is added the RCOOH reacts and removing the OH⁻ ion (from the solution) (1) 	Allow alkali reacts with RCOOH forming RCOO ⁻ or $RCOO^{(-)}Na^{(+)}$ Allow OH ⁻ reacts with H ⁺ and RCOOH dissociates to replace the H ⁺ Allow RCOOH + OH ⁻ \rightarrow RCOO ⁻ + H ₂ O Allow H ⁺ + OH ⁻ \rightarrow H ₂ O and $RCOO^{-}$ + H ⁺ \Rightarrow RCOOH shifts to the left	
	• [RCOOH] and [RCOO ⁻] do not change (significantly) (1)	Accept the ratio [RCOOH] : [RCOO ⁻] does not change (significantly) Ignore reference to pH change Allow Use of RCOOH and RCOO ⁻ OR acid and salt for [RCOOH] and [RCOO ⁻]	
		For M2 and M3: Just 'acid reacts with RCOO ⁻ and alkali reacts with RCOOH' scores (1)	

Question number	Answer		Additional guidance	Mark
21(c)(ii)		Example of calculation	(3)	
	• calculation of [H ⁺]	(1)	$[H^+] = 10^{-3.71} = 1.9498 \text{ x } 10^{-4} \text{ (mol dm}^{-3}\text{)}$	
	• rearrangement of K_a equation	(1)	$[\text{RCOO}^-] = \frac{K_a \times [\text{RCOOH}]}{[\text{H}^+]}$	
	 substitution of values and calculation of [RCOO⁻] = moles required 	(1)	$[\text{RCOO}^{-}] = \frac{1.55 \text{ x } 1.38 \text{ x } 10^{-4}}{1.9498 \text{ x } 10^{-4}}$	
	OR Use of Henderson-Hasselbalch		$= 1.0970 / 1.10 / 1.1 \text{ (mol / mol dm}^{-3}\text{)}$	
	• quotation of equation	(1)	$pH = pK_a + \log[RCOO^-]$ [RCOOH] Ignore round brackets or no brackets	
	• substitution of values	(1)	$3.71 = 3.86 + \log [\underline{\text{RCOO}}^{-}]$ 1.55	
	• calculation of [RCOO ⁻] = moles required	(1)	$[RCOO^{-}] = 1.0970 / 1.10 / 1.1 \text{ (mol / mol dm}^{-3})$	
			Henderson-Hasselbalch equation with acid and salt concentration reversed gives 2.19 mol scores (2)	
			Correct answer with some working scores (3)	

(Total for Question 21 = 19 marks) TOTAL FOR SECTION C = 19 MARKS TOTAL FORPAPER = 90 MARKS

PMT